

Version: 1.0

Customer's Confirmation

Technical Specification

MODEL NO: VB3300-AAB (ET011TT6)

The content of this information is subject to be changed without notice. Please contact E Ink or its agent for further information.

☐E Ink's Confirmation

Confirmed By LEMA

Prepared By Men Ha

Revision History

Rev.	Issued Date	Revised Contents
1.0	Dec. 28, 2021	Preliminary

TECHNICAL SPECIFICATION

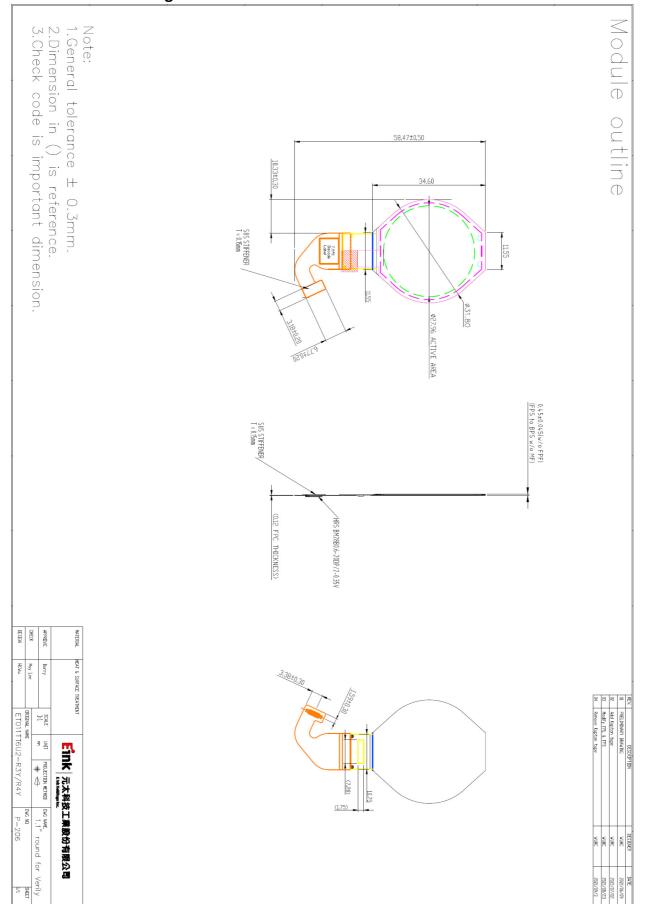
CONTENTS

NO.	ITEM	PAGE
-	Cover	1
1	Revision History	2
-	Contents	3
1	General Description	4
2	Features	4
3	Mechanical Specifications	4
4	Mechanical Drawing of EPD Module	5
5	Input /Output Interface	6
6	Electrical Characteristics	8
7	Power Sequence	14
8	Optical Characteristics	14
9	Handling, Safety and Environment Requirements and Remark	16
10	Reliability Test	18
11	Border Definition	19
12	Block Diagram	20
13	Reference Circuit	20
14	Software Programming Guide	21
15	User Mode Flow Chart	22
16	Command Table	26
17	Packing	41

1. General Description

VB3300-AAB is a reflective electrophoretic E Ink technology display module based on active matrix TFT and plastic substrate. It has 1.1" active area with 240 x 240 pixels, and the display is capable to display images at 4 gray levels (2 bits) depending on the display controller and the associated waveform file it used.

2. Features

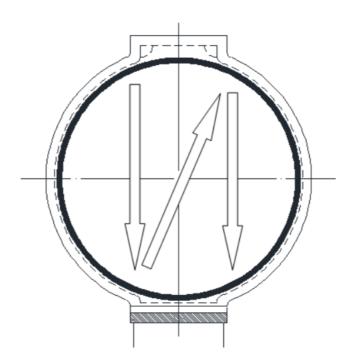

- ➤ High contrast reflective/electrophoretic technology
- ➤ 240x240 display
- > High reflectance
- > Ultra wide viewing angle
- > Pure reflective mode
- ➤ Bi-stable
- Commercial temperature range
- > Plastic substrate

3. Mechanical Specifications

Parameter	Specifications	Unit	Remark
Screen Size	1.1	Inch	
Display Resolution	240 (H) × 240(V)	Pixel	
Active Area	Ф27.96	mm	
Pixel Pitch	$116.5(H) \times 116.5(V)$	μm	
Pixel Configuration	Rectangle		
Outline Dimension	31.8(W)*34.6(H)*0.54(D) (W/PF)		
Outline Dimension	31.8(W)*34.6(H)*0.49(D) (W/O PF)	mm	
Module Weight	0.83±0.08	g	
Display Operating Mode	Reflective mode		

4. Mechanical Drawing of EPD Module

5. Input /Output Interface


5-1) Connector type: BM28B0.6-20DP/2-0.35V(51)

5-2) Pin Assignment

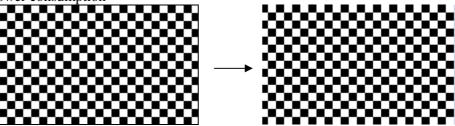
Pin#	Signal	I/O	Description	
1	VCOM	I	VCOM driving voltage	
2	VGL	P	Negative Gate driving voltage	
3	VDL	P	Negative Source driving voltage	
4	VGH	P	Positive Gate driving voltage	
5	VDH	P	Positive Source driving voltage	
6	NC	NC	NC	
7	VDDDO	P	Core logic power pin	
8	VSS	P	Ground	
9	VDD	P	Power Supply	
10	SDA	I/O	Serial data pin (SPI)	
11	SCL	I	Serial clock pin (SPI)	
12	CSB	I	Chip Select input pin	
13	DC	I	Data /Command control pin	
14	RST_N	I	Reset	
15	BUSY_N	О	Busy state output pin	
16	BS	I	Bus selection pin; L: 4-wire IF. H: 3-wire IF.(Default)	
17	VSHR	I/O	Positive driving voltage for driver IC use	
18	RESE	P	Current Sense Input for the Control Loop	
19	GDR	О	N-Channel MOSFET Gate Drive Control	
20	VSS	P	Ground	

5-3) Panel Scan Direction

6. Electrical Characteristics

6-1) Absolute Maximum Ratings:

Parameter	Symbol	Rating	Unit	Remark
Logic Supply Voltage	VDD	-0.3 to +6	V	
Operating Temp. Range	TOTR	0 to +50	$^{\circ}\!\mathbb{C}$	
Storage Temperature	TSTG	-25 to +70	$^{\circ}\!\mathbb{C}$	

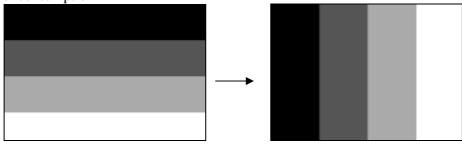

6-2) Panel DC Characteristics

Parameter	Symbol	Conditions	Min	Тур	Max	Unit
Signal ground	VSS		-	0	-	V
	VDD		2.3	3.3	3.6	V
	VSH		10	11	12	
I ania waltana awania	VSL		-10	-11	-12	
Logic voltage supply	VGH		14	15	16	
	VGL		-13.8	-15	-16	
	Ivdd	Vdd=3.3V	ı	7	35	mA
Common voltage	VCOM		2.00	A 1:4-1	1 20	V
Maximum Power panel	V COIVI		-2.90	Adjusted	-1.30	v
Typical power panel	Ptyp		-	23.1	126	mW
Standby power panel	Pstby		-	-	0.1	mW

- The maximum power consumption is measured with following pattern transition: from pattern of repeated 1 consecutive black scan lines followed by 1 consecutive white scan line to that of repeated 1 consecutive white scan lines followed by 1 consecutive black scan lines. (Note 6-1)
- The Typical power consumption is measured with following pattern transition: from horizontal 4 gray scale pattern to vertical 4 gray scale pattern. (Note 6-2)
- The standby power is the consumed power when the panel controller is in standby mode.

Note6-1

The maximum power consumption



Note6-2

The typical power consumption

6-3) Panel AC characteristics

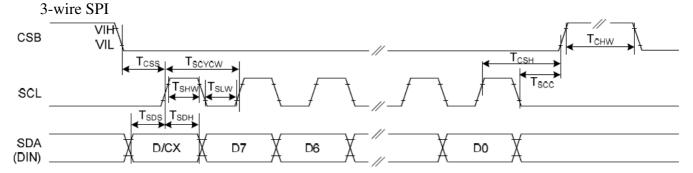


Figure: 3-wire Serial Interface Characteristics (Write mode)

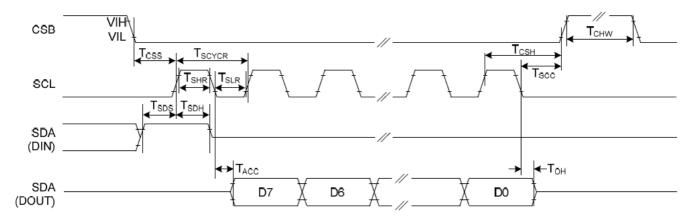


Figure: 3-wire Serial Interface Characteristics (Read mode)

Symbol	Signal / Parameter	Conditions	Min.	Тур.	Max.	Unit
T _{CSS}		Chip select setup time	60			ns
T _{CSH}	CSB	Chip select hold time	65			ns
T _{SCC}	CSB	Chip select setup time	20			ns
T _{CHW}		Chip select setup time	40			ns
T _{SCYCW}		Serial clock cycle (Write)	100			ns
T _{SHW}		SCL "H" pulse width (Write)	35			ns
Tslw	SCL	SCL "L" pulse width (Write)	35			ns
T _{SCYCR}	SOL	Serial clock cycle (Read)	150			ns
T _{SHR}		SCL "H" pulse width (Read)	60			ns
T _{SLR}		SCL "L" pulse width (Read)	60			ns
T _{SDS}	SDA	Data setup time	30			ns
T _{SDH}	(DIN)	Data hold time	30			ns
T _{ACC}	SDA	Access time			50	ns
Тон	(DOUT)	Output disable time	15			ns

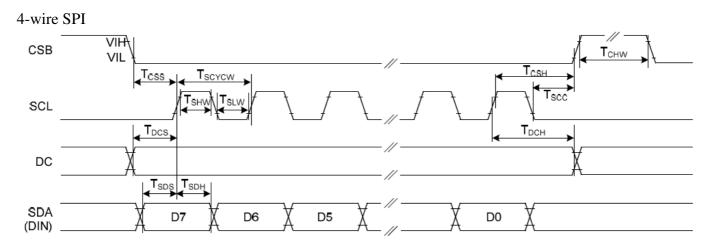


Figure: 4-wire Serial Interface Characteristics (Write mode)

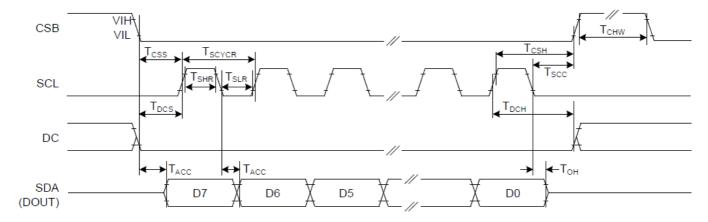


Figure: 4-wire Serial Interface Characteristics (Read mode)

VB3300-AAB(ET011TT6)

Symbol	Signal / Parameter	Conditions	Min.	Тур.	Max.	Unit
T _{CSS}		Chip select setup time	60			ns
T _{CSH}	CSB	Chip select hold time	65			ns
T _{SCC}	COD	Chip select setup time	20			ns
T _{CHW}		Chip select setup time	40			ns
T _{SCYCW}		Serial clock cycle (Write)	100			ns
T _{SHW}		SCL "H" pulse width (Write)	35			ns
T _{SLW}	SCL	SCL "L" pulse width (Write)	35			ns
T _{SCYCR}	50L	Serial clock cycle (Read)	150			ns
T _{SHR}		SCL "H" pulse width (Read)	60	30		ns
T _{SLR}		SCL "L" pulse width (Read)	60			ns
T _{DCS}	DC	DC setup time	30			ns
T _{DCH}	DC	DC hold time	30			ns
T _{SDS}	SDA	Data setup time	30			ns
T _{SDH}	(DIN)	Data hold time	30			ns
T _{ACC}	SDA	Access time			50	ns
T _{OH}	(DOUT)	Output disable time	15			ns

6-4) Controller Timing

SPI COMMAND

3 wire SPI format

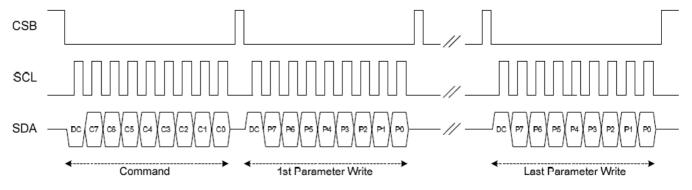


Figure: 3-wire SPI write operation

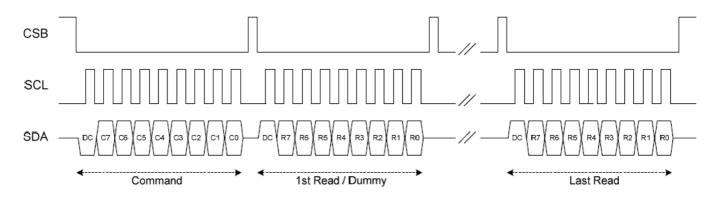


Figure: 3-wire SPI read operation

VB3300-AAB(ET011TT6)

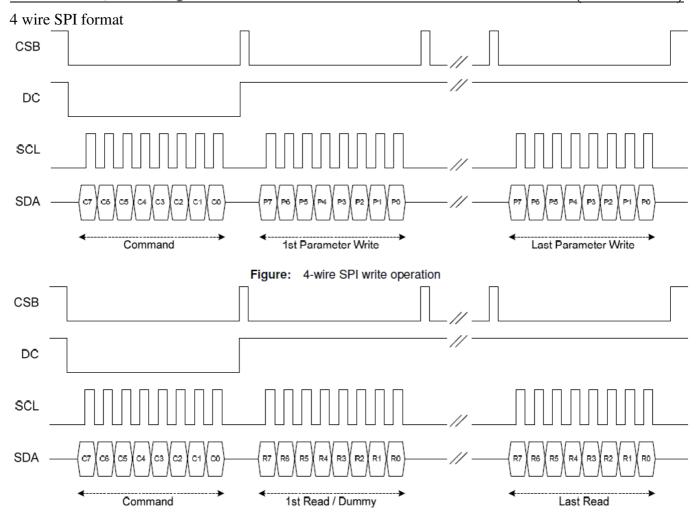
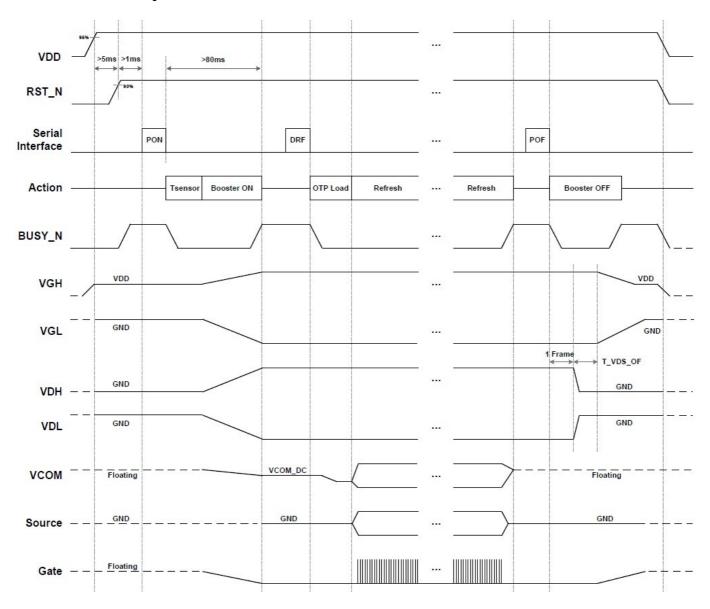



Figure: 4-wire SPI read operation

7. Power Sequence

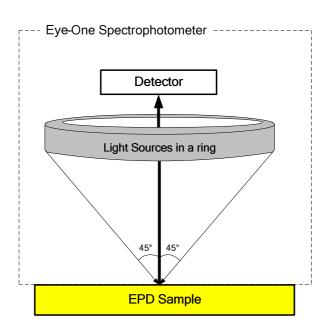
POWER ON/OFF Sequence

8. Optical characteristics

8-1) Specifications

Measurements are made with that the illumination is under an angle of 45 degrees, the detector is perpendicular unless otherwise specified.

 $T = 25^{\circ}C$


Symbol	Parameter	Conditions	Min	Тур.	Max	Unit	Note
R	Reflectance	White	30	40	-	%	Note 8-1
Gn	N _{th} Grey Level	-	-	DS+(WS-DS) ×n/(m-1)	-	L*	-
CR	Contrast Ratio	-	8	12	-		-

WS: White state, DS: Dark state

Note 8-1: Luminance meter: Eye – One Pro Spectrophotometer

8-2) Definition of contrast ratio

The contrast ratio (CR) is the ratio between the reflectance in a full white area (RI) and the reflectance in a dark area (Rd): CR = RI / Rd

8-3) Reflection Ratio

The reflection ratio is expressed as:

$R = Reflectance Factor_{white board} x (L_{center} / L_{white board})$

L_{center} is the luminance measured at center in a white area (R=G=B=1). L_{white board} is the luminance of a standard white board. Both are measured with equivalent illumination source. The viewing angle shall be no more than 2 degrees.

9. Handling, Safety and Environment Requirements and Remark

WARNING

The display module should be kept flat. It should not be used for continual flexing and bending. Handle with care. Should the display break do not touch any material that leaks out. In case of contact with the leaked material then wash with water and soap. Contact E Ink for advice on mounting the display.

CAUTION

The display module should not be exposed to harmful gases, such as acid and alkali gases, which corrode electronics components.

Disassembling the display module can cause permanent damage and invalidates the warranty agreements.

Mounting Precautions

- (1) It's recommended that you consider the mounting structure so that uneven force (ex. Twisted stress) is not applied to the module.
- (2) It's recommended that you attach a transparent protective plate to the surface in order to protect the EPD. Transparent protective plate should have sufficient strength in order to resist external force.
- (3) You should adopt radiation structure to satisfy the temperature specification.
- (4) Acetic acid type and chlorine type materials for the cover case are not desirable because the former generates corrosive gas of attacking the PS at high temperature and the latter causes circuit break by electro-chemical reaction.
- (5) Do not touch, push or rub the exposed PS with glass, tweezers or anything harder than HB pencil lead. And please do not rub with dust clothes with chemical treatment. Do not touch the surface of PS for bare hand or greasy cloth. (Some cosmetics deteriorate the PS)
- (6) When the surface becomes dusty, please wipe gently with absorbent cotton or other soft materials like chamois soaks with petroleum benzene. Normal-hexane is recommended for cleaning the adhesives used to attach the PS. Do not use acetone, toluene and alcohol because they cause chemical damage to the PS.
- (7) Wipe off saliva or water drops as soon as possible. Their long time contact with PS causes deformations and color fading.

Do	ta	ch	aat	cto	tus
112	ии	SII	eei.	SIZ	1118

Product specification This data sheet contains preliminary version product specifications.

Limiting values

Limiting values given are in accordance with the Absolute Maximum Rating System (IEC 134). Stress above one or more of the limiting values may cause permanent damage to the device. These are stress ratings only and operation of the device at these or at any other conditions above those given in the Characteristics sections of the specification is not implied. Exposure to limiting values for extended periods may affect device reliability.

Application information

Where application information is given, it is advisory and does not form part of the specification.

Remark

All the specifications listed in this document are guaranteed for module only. Post-assembled operation or component(s) may impact module performance or cause unexpected effect or damage and therefore listed specifications is not warranted after any post-assembly operation.

10. Reliability test

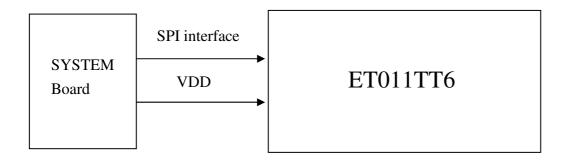
	TEST	CONDITION	METHOD
1	High-Temperature Operation	T = +50 °C, RH = 30% , for 240 hrs	IEC 60 068-2-2Bb
2	Low-Temperature Operation	T = 0 °C , for 240 hrs	IEC 60 068-2-1Ab
3	High-Temperature Storage	T = +70 ℃, RH=40%, for 240 hrs (Test In White Pattern)	IEC 60 068-2-2Bb
4	Low-Temperature Storage	T = -25 ℃ , for 240 hrs (Test In White Pattern)	IEC 60 068-2-1Ab
5	High-Temperature, High-Humidity Operation	T = +40 °C, RH = 90% , for 168 hrs	IEC 60 068-2-78
6	High Temperature, High- Humidity Storage	$T = +60^{\circ}C$, RH=80%, for 240 hrs (Test In White Pattern)	IEC 60 068-2-78
7	Temperature Cycle	-25°C→+70°C, 100 Cycles 30min 30min Test in white pattern	IEC 60 068-2-14
8	Solar radiation test	765 W/m²,40°C, for 168 hrs (Test In White Pattern)	IEC60 068-2-5Sa
9	Electrostatic Effect (non-operating)	(Machine model)+/- 250V 0Ω , 200pF	IEC 62179, IEC 62180

Actual EMC level to be measured on customer application

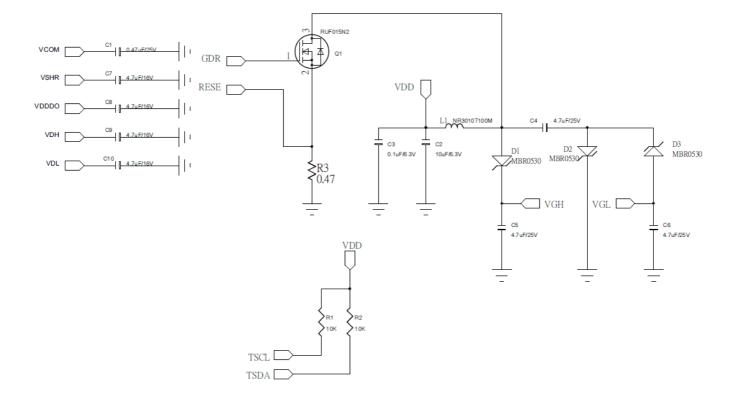
Note: The protective film must be removed before temperature test.

< Criteria >

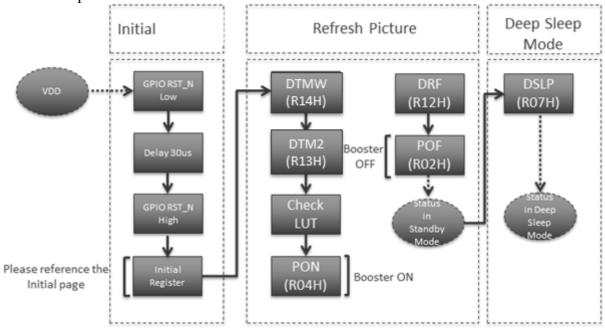
In the standard conditions, there is not display function NG issue occurred. (including: line defect, no image). All the cosmetic specification is judged before the reliability stress.

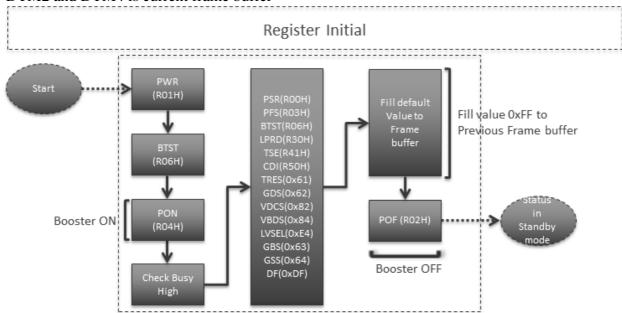


11. Border Definition



12. Block Diagram

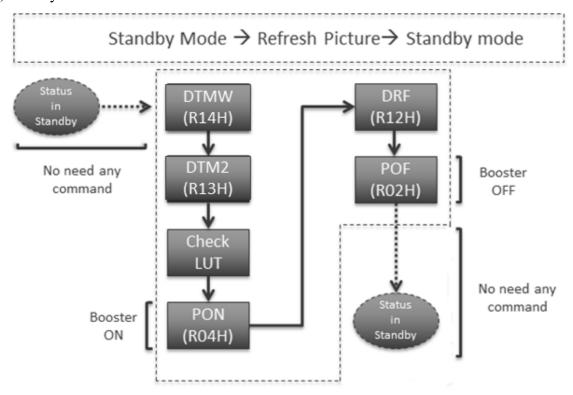

13. Reference Circuit



14. Software Programming Guide

This section describes the image update flow for the ET011TT6. After the system MCU sends a 2-bit image to the driver IC, the BUSY signal from the panel should be monitored and used to indicate the completion of the update.

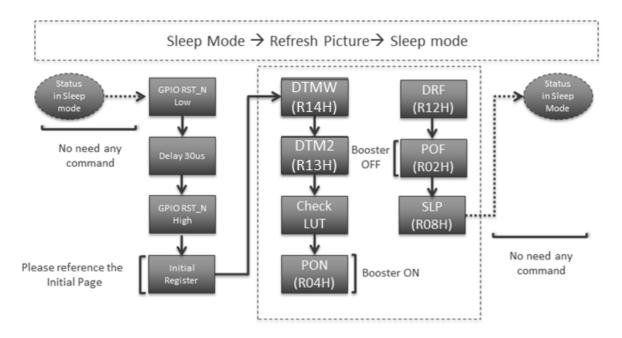
- · Please reference Registers initial flow to initial registers
- DTM1 and DTM2 is for 2 Bpp image data
- · DTM3 and DTM4 is for 1 Bpp image data
- · DTM1 and DTM3 is previous frame buffer
- · DTM2 and DTM4 is current frame buffer



- In frist time power on, the previous Frame buffer data is randon, so we need initial buffer data to white(0xFF is mean white)
- Please reference the sample code to set all registers.

15. User Mode Flow Chart

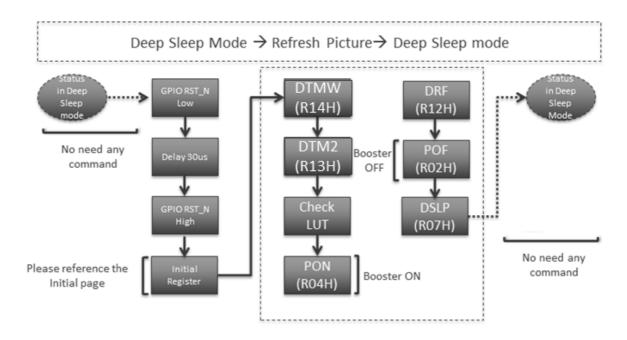
15-1)Standby Mode



Item	Character
VDDDO	1.8V
Booster	OFF
Keep Frame Buffer	Yes
Keep Registers Setting	Yes

Note: Please reference Initial Registers page for initial registers stage

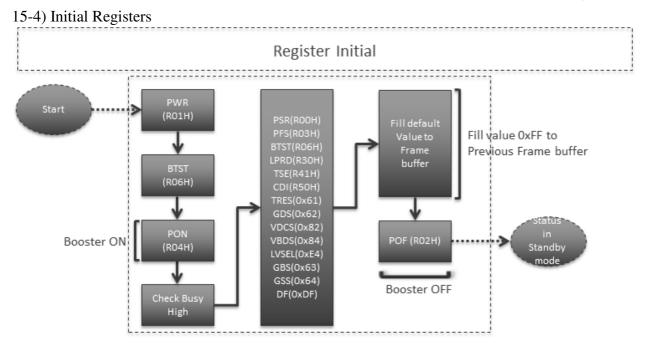
15-2) Sleep Mode



Item	Character
VDDDO	1.0V
Booster	OFF
Keep Frame Buffer	Yes
Keep Registers Setting	Not Guarantee

Note: Please reference Initial Registers page for initial registers stage

15-3) Deep Sleep Mode



Item	Character
VDDDO	0.0V
Booster	Off
Keep Frame Buffer	No
Keep Registers Setting	No

Note:

- 1. In "Deep Sleep Mode", the control signals are recommended tied to 0v and RST_N is released to floating
- 2. Die must be keep away from light which causes photoelectric effect to make internal nodes unstable
- 3. Please reference Initial Registers page for initial registers stage

Note:

- 1. In frist time power on, the previous Frame buffer data is random, so we need initial buffer data to white(0xFF is mean white)
- 2. Please reference the sample code to setting all registers.

16. Command Table

Register Definition

16-1) R00H (PSR): Panel setting Register

Action	W/R	C/D	D7	D6	D5	D4	D3	D2	D1	D0
	W	0	0	0	0	0	0	0	0	0
	W	1	0	0	-	0	1	SHL	SHD_N	RST_N
Setting the panel	W	REG_ EN	1	1	1	-	1	1	1	0

NOTE: "-" Don't care, can be set to VDD or GND level

SHL: 0: Shift left.

1: Shift right. (default)

SDMD	SHL	Source order (128 channels)	Source order (Reduced: \$63~\$60)
0: Edge start	0: Shift right	$\begin{array}{c} S127 \rightarrow \dots \rightarrow S64 \rightarrow S63 \rightarrow \dots \\ \rightarrow S0 \end{array}$	$\begin{array}{c} S127 \rightarrow \dots \rightarrow S64 \rightarrow S59 \rightarrow \dots \\ \rightarrow S0 \end{array}$
0: Edge start	1: Shift left	$S0 \rightarrow \dots \rightarrow S63 \rightarrow S64 \rightarrow \dots \rightarrow S127$	$S0 \rightarrow \dots \rightarrow S59 \rightarrow S64 \rightarrow \dots \rightarrow S127$
1: Center start	0: Shift right	$\begin{array}{c} S63 \rightarrow \dots \rightarrow S0 \rightarrow S127 \rightarrow \dots \\ \rightarrow S64 \end{array}$	$\begin{array}{c} S59 \rightarrow \dots \rightarrow S0 \rightarrow S127 \rightarrow \dots \\ \rightarrow S64 \end{array}$
1: Center start	1: Shift left	$S64 \rightarrow \dots \rightarrow S127 \rightarrow S0 \rightarrow \dots$ $\rightarrow S63$	$S64 \rightarrow \dots \rightarrow S127 \rightarrow S0 \rightarrow \dots$ $\rightarrow S59$

SHD_N: Booster Shutdown

0: Booster shutdown and register data kept.

1: No booster shutdown (default)

RST_N: Soft Reset.

0: Assert reset function: Booster OFF and Register data reset to it default value.

1: No effect (default)

REG_EN: LUT selection

0: Using LUT from OTP (default)

1: Using LUT from internal register

16-2) R01H (PWR): Power setting Register

Action	W/R	C/D	D7	D6	D5	D4	D3	D2	D1	D0
Selecting	W	0	0	0	0	0	0	0	0	1
	W	1	-	-	-	-	-	ı	VS_EN	VG_EN
	W	1	-	-	•	1	-	0	0	0
Internal/External Power	W	1	•	-	0	1	1	1	0	0
	W	1	•	-	0	1	1	1	0	0
	W	1	•	-	0	0	1	0	0	0

NOTE: "-" Don't care, can be set to VDD or GND level

VS_EN: Source power selection

0: External source power from VDH/VDL pins

1 : Internal DC/DC function for generating VDH/VDL

VG_EN: Gate power selection

0 : External gate power from VGH/VGL pins

1 : Internal DC/DC function for generating VGH/VGL

16-3) R02H (POF): Power OFF Command

Action	W/R	C/D	D7	D6	D5	D4	D3	D2	D1	D0
Turning OFF the power	W	0	0	0	0	0	0	0	1	0

After the Power Off command, driver will power off based on the Power Off Sequence, BUSY_N will become "0". This command will turn off charge pump, T-con, source driver, gate driver, VCOM, and temperature sensor, but register data will be kept until VDD becomes OFF.

SD output and Vcom will base on previous condition. It may have 2 conditions: 0V or floating.

This command can be active only when BUSY_N = "1".

VB3300-AAB(ET011TT6)

16-4) R03H (PFS): Power off sequence setting Register

Action	W/R	C/D	D7	D6	D5	D4	D3	D2	D1	D0
G wi D OFF	W	0	0	0	0	0	0	0	1	1
Setting Power OFF sequence	W	1	ı	ı	T_VDS	_OFF[1:	•	-	•	-

NOTE: "-" Don't care, can be set to VDD or GND level

T_VDS_OFF[1:0]: Power OFF Sequence of VDPS and VDNS.

00b: 1 frame (Default)

01b: 2 frames

10b: 3 frames

11b: 4 frame

This command can be active only when BUSY_N = "1".

16-5) R04H (PON): Power ON Command

Action	W/R	C/D	D7	D6	D5	D4	D3	D2	D1	D0
Turning ON the power	W	0	0	0	0	0	0	1	0	0

After the Power ON command, the driver will be powered ON following the Power ON Sequence. After the Power ON command and all power sequence are ready, the BUSY_N signal will become "1". Refer to the Power ON Sequence section.

16-6) R06h (BTST): Booster Soft Start

Action	W/R	C/D	D7	D6	D5	D4	D3	D2	D1	D0
	W	0	0	0	0	0	0	1	1	0
	***	1	ВТРН	ВТРН	ВТРН	ВТРН	ВТРН	ВТРН	ВТРН	ВТРН
	W	1	A7	A6	A5	A4	A3	A2	A1	A0
Starting data transmission	***	1	ВТРНВ	ВТРНВ	ВТРНВ	ВТРНВ	ВТРНВ	ВТРНВ	ВТРНВ	ВТРНВ
	W	1	7	6	5	4	3	2	1	0
	***	1			ВТРН	ВТРН	ВТРН	ВТРН	ВТРН	ВТРНС
	W	1	ı	1	A5	C4	C3	C2	C1	0

NOTE: "-" Don't care, can be set to VDD or GND level

BTPHA[7:6]: Soft start period of phase A

00b: 10mS

01b: 20mS

10b: 30mS

11b: 40mS

BTPHA[5:3]: Driving strength of phase A

000b: strength 1

001b: strength 2

010b: strength 3

011b: strength 4

100b: strength 5

101b: strength 6

110b: strength 7

111b: strength 8

(strongest)

BTPHA[2:0]: Minimum OFF time setting of GDR in phase B

000b: 0.27uS

001b: 0.34uS

010b: 0.40uS

011b: 0.54uS

VB3300-AAB(ET011TT6)

100b: 0.80uS 101b: 1.54uS 110b: 3.34uS 111b: 6.58uS

BTPHB[7:6]: Soft start period of phase B

BTPHB[5:3] : Driving strength of phase B

000b: strength 1 001b: strength 2 010b: strength 3 011b: strength 4

100b: strength 5 101b: strength 6 110b: strength 7 111b: strength 8

(strongest)

BTPHB[2:0]: Minimum OFF time setting of GDR in phase B

100b: 0.80uS 101b: 1.54uS 110b: 3.34uS 111b: 6.58uS

BTPHC[5:3]: Driving strength of phase C

000b: strength 1 001b: strength 2 010b: strength 3 011b: strength 4

100b: strength 5 101b: strength 6 110b: strength 7 111b: strength 8

(strongest)

BTPHC[2:0]: Minimum OFF time setting of GDR in phase C

16-7) R07H (DSLP): Deep sleep

Action	W/R	C/D	D7	D6	D5	D4	D3	D2	D 1	D0
	W	0	0	0	0	0	0	1	1	1
Deep sleep	W	1	1	0	1	0	0	1	0	1

NOTE: "-" Don't care, can be set to VDD or GND level

This command makes the chip enter the deep-sleep mode. The deep sleep mode could return to stand-by mode by hardware reset assertion.

The only one parameter is a check code, the command would be executed if check code is A5h.

16-8) R08H (SLP): sleep

Action	W/R	C/D	D7	D6	D5	D4	D3	D2	D1	D0
,	W	0	0	0	0	0	1	0	0	0
sleep	W	1	1	0	1	0	0	1	0	1

NOTE: "-" Don't care, can be set to VDD or GND level

This command makes the chip enter the sleep mode. The sleep mode could return to stand-by mode by hardware reset assertion.

The only one parameter is a check code, the command would be executed if check code is A5h.

16-9) R10H (DTM1): Data Start Transmission 1

Action	W/R	C/D	D7	D6	D5	D4	D3	D2	D1	D0
	W	0	0	0	0	1	0	0	0	0
	W	1	Pixel0[1:0]		Pixel1[1:0]		Pixel2[1:0]-		Pixel3[1:0]	
Starting data transmission	W	1	•	•••		•••		••		
	W	1	Pixel(N	-4)[1:0]	Pixel(N-3)[1:0]		Pixel(N-2)[1:0]		Pixel(N-1)[1:	

This command indicates that user starts to transmit data. Then write to old SRAM:

	Source Dri	ver Output
	DDX=1(Default)	DDX=0
Pixel[1:0]	LUT	LUT
00	Black	White
01	-	-
10	-	-
11	White	Black

16-10) R12H (DRF): Display Refresh

Action	W/R		D7	D6	D5	D4	D3	D2	D1	D0		
	W	0	0	0	0	1	0	0	1	0		
	W	1	ı	ı	ı	PSCA N	RGL_E N	0	Mode	e[1:0]		
	W	1		X[7:0]								
(8 byte command)	W	1	1	1	1	_	-	-	Y[9	9:8]		
	W	1				Y[7	7:0]					
	W	1				W[7:0]					
	W	1							L[9	9:8]		
	W	1				L[7	7:0]					

PSCAN: Partial Scan control

0: Partial Scan disable.

1: Partial Scan enable (Gate Scan within Display Window only)

RGL_EN: REGAL function control

0: REGAL function disable.

1: REGAL function enable.

VB3300-AAB(ET011TT6)

MODE: Mode selection, register or OTP.

REG_EN	MODE[1:0]	Description	Mode
	00	OTP mode-0 LUT	KWG (K/W/Gray)
0	01	OTP mode-1 LUT	KW (K/W)
	1x	OTP mode-2 LUT	KWR (K/W/Red)
	00	Registers (R20h / R22h) KWG LUT and	KWG (K/W/Gray)
1	01	(R26h) FT LUT	KW (K/W)
	1x	Registers (R21h / R23h / R24h / R25h) Red LUT	KWR (K/W/Red)

X[7:0]: X-axis Start Point. X-axis start point for update display window.

Y[9:0]: Y-axis Start Point. Y-axis start point for update display window.

W[7:0]: X-axis Window Width. X-axis width for update display window.

L[9:0]: Y-axis Window Width. Y-axis width for update display window.

16-11) R13H (DTM2): Data Start Transmission 2

10 11) 11111 (2 1112) (2 111 2 11 11 11 11 11 11 11 11 11 11 1											
Action	W/R	C/D	D7	D6	D5	D4	D3	D2	D1	D0	
	W	0	0	0	0	1	0	0	1	1	
	W	1	Pixel0[1:0]		Pixel1[1:0]		Pixel2[1:0]-		Pixel3[1:0]		
Starting data transmission	W	1	•	•••		•••		•	•••		
	W	1	Pixel(N	-4)[1:0]	Pixel(N-3)[1:0]		:0] Pixel(N-2)[1:0]		Pixel(N-1)[1:0		

This command indicates that user starts to transmit data. Then write to new SRAM:

	Source Dri	ver Output
	DDX=1(Default)	DDX=0
Pixel[1:0]	LUT	LUT
00	Black	White
01	-	-
10	-	-
11	White	Black

16-12) R14H (DTMW): Data Start Transmission Window Register

Action	W/R	C/D	D7	D6	D 5	D4	D3	D2	D1	D 0			
	W	0	0	0	0	1	0	1	0	0			
	W	1		X[7:0]									
	W	1	1	1	1	ı	1	-	Y[9	9:8]			
(8 byte command)	W	1	Y[7:0]										
	W	1				W[7:0]						
	W	1			·				L[9	0:8]			
	W	1				L[7	7:0]						

This command indicates the window before user start to transmit data.

The window is defined by (X, Y, W, L). X and W should be 4n format where n is integer.

16-13) R15H (DTM3): Data Start Transmission 3

Action	W/R	C/D	D7	D6	D5	D4	D3	D2	D1	D0
	W	0	0	0	0	1	0	1	0	1
	W	1	Pixel 0	Pixel 1	Pixel 2	Pixel 3	Pixel 4	Pixel 5	Pixel 6	Pixel 7
Starting data transmission	W	1	•••	•••	•••	•••	•••	•••	•••	•••
	***	1	Pixel(N	Pixel(N	Pixel(N	Pixel(N	Pixel(N	Pixel(N	Pixel(N	Pixel(N
	W	1	-8)	-7)	-6)	-5)	-4)	-3)	-2)	-1)

This command transmitting old data to SRAM using KW mode only.

Pixel[0]: data bit for KW,

0: Black

1: White

	Source Driver (KW Mode)										
	DDX=1 (Default)	DDX=0									
Data	LUT	LUT									
0	Black	White									
1	White	Black									

16-14) R16H (DTM4): Data Start Transmission 4

Action	W/R	C/D	D7	D6	D5	D4	D3	D2	D1	D 0
	W	0	0	0	0	1	0	1	1	0
	W	1	Pixel 0	Pixel 1	Pixel 2	Pixel 3	Pixel 4	Pixel 5	Pixel 6	Pixel 7
Starting data transmission	W	1	•••	•••	•••	•••	•••	•••	•••	•••
	***	1	Pixel(N	Pixel(N	Pixel(N	Pixel(N	Pixel(N	Pixel(N	Pixel(N	Pixel(N
	W	1	-8)	-7)	-6)	-5)	-4)	-3)	-2)	-1)

This command transmitting old data to SRAM using KW mode only.

Pixel[0]: data bit for KW,

0: Black

1: White

	Source Driver (KW Mode)									
	DDX=1	DDX=0								
	(Default)									
Data	LUT	LUT								
0	Black	White								
1	White	Black								

16-15) R30H (LPRD): PLL Control

Action	W/R	C/D	D7	D6	D5	D4	D3	D2	D1	D0
G . III DI I	W	0	0	0	1	1	0	0	0	0
Controlling PLL	W	1	LCLK[7:0]							

The command controls the PLL clock frequency. The PLL structure supports the following frame rates:

(FR: Frame Rate, Unit: Hz)

LCLK[7:0]: Line Period Setting. Specify clock cycle number of 1MHz for one line period. (LCLK >=4)

04h: 5 clock cycles

12h: 19 clock cycles

16-16) R40H (TSC) Temperature Sensor Command

Action	W/R	C/D	D7	D6	D5	D4	D3	D2	D1	D0
Sensing Temperature	W	0	0	0 1 0 0 0 0 0						
	R	1	D[10:3] or TS[7:0]							
	R	1		D[2:0]		•	•	•	•	-

This command reads the temperature sensed by the temperature sensor.

TS[7:0]: When TSE (R41h) is set to 0, this command reads internal temperature sensor value.

D[10:0]: When TSE (R41h) is set to 1, this command reads external LM75 temperature sensor value.

TS[7:0]	Temperature($^{\circ}$ C)
1100 1110b	-25
1100 1111b	-24.5
1101 0000b	-24.5
:	:
1111 1110b	-1
1111 1111b	-0.5
0000 0000b	0
0000 0001b	0.5
0000 0010b	1
:	:
0101 1010b	45
:	:
0110 0011b	49.5
0110 0100b	50

16-17) R41H (TSE) Temperature Sensor Enable

Action	W/R	C/D	D7	D6	D 5	D4	D3	D2	D1	D0
Calibrate Temperature	W	0	0	1	0	0	0	0	0	1
Sensor	W	1	TSE	•	•	•	TO[3:0]			

This command selects Internal or External temperature sensor.

TSE: Internal temperature sensor switch

0: Enable (default)

1: Disable; using external sensor.

TO[3:0]: Temperature Offset

TO[3:0]	Temperature Offset	TO[3:0]	Temperature Offset
0000	+0(Default)	1000	-8.0
0001	+1.0	1001	-7.0
0010	+2.0	1010	-6.0
0011	+3.0	1011	-5.0
0100	+4.0	1100	-4.0
0101	+5.0	1101	-3.0
0110	+6.0	1110	-2.0
0111	+7.0	1111	-1.0

16-18) R42H (TSW) Temperature Sensor Write

Action	W/R	C/D	D7	D6	D5	D4	D3	D2	D1	D0			
	W	0	0	1	0	0	0	0	1	0			
Calibrate Temperature	ure W 1 WATTR[7:0]												
Sensor	W	1	WMSB[7:0]										
	W	1				WLSI	3[7:0]						

This command reads the temperature sensed by the temperature sensor.

WATTR: D[7:6]: I²C Write Byte Number

00:1 byte (head byte only)

01 : 2 bytes (head byte + pointer)

10: 3 bytes (head byte + pointer + 1st parameter)

11: 4 bytes (head byte + pointer + 1st parameter + 2nd parameter)

D[5:3]: User-defined address bits (A2, A1, A0)

D[2:0]: Pointer setting

WMSB[7:0]: MSByte of write-data to external temperature sensor

WLSB[7:0]: LSByte of write-data to external temperature sensor

16-19) R43H (TSR) Temperature Sensor Read

Action	W/R	C/D	D7	D6	D5	D4	D3	D2	D1	D 0
	W	0	0	1	0	0	0	0	1	1
Calibrate Temperature	W	1		RMSB[7:0]						
Sensor	W	1				RLSE	B[7:0]			

This command reads the temperature sensed by the temperature sensor.

RMSB[7:0]: MSByte read data from external temperature sensor

RLSB[7:0]: LSByte read data from external temperature sensor

16-20) R50H (CDI) VCOM and Data interval setting

Action	W/R	C/D	D7	D6	D5	D4	D3	D2	D1	D0
	W	0	0	1	0	1	0	0	0	0
	W	1	BDZ	BDV	VBD	[1:0]	1	-	-	DDX
	W	1		DCI	[3:0]		1	1	CDI	[9:8]
	W	1				CDI	[7:0]			

This command indicates the interval of Vcom and data output. When setting the vertical back porch, the total blanking will be kept

(20 Hsync).

BDZ: Border Hi-Z control

0: Border Output Hi-Z disabled. (default)

1: Border Output Hi-Z enabled

BDV: Border DC Voltage control

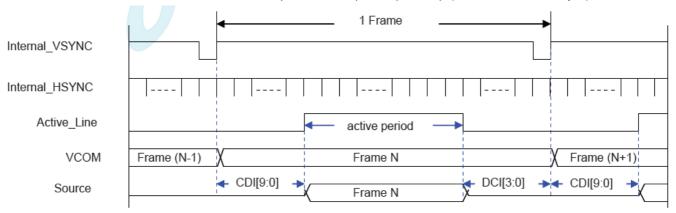
0: Border Output DC Voltage Function disabled. (default)

1: Border Output DC Voltage Function enabled.

VBD[1:0]: Border output selection

DDX[1:0]: Data polality.

	Border	Output
	DDX=1(Default)	DDX=0
VBD[1:0]	LUT	LUT
00	Black	White
01	-	-
10	-	-
11	White	Black


DCI[3:0]: Source to VCOM interval. Interval time setting from source data to VCOM.

0000b ~ 1111b: 1 Hsync ~ 16 Hsync, respectively. (Default: 001b: 4 Hsync)

CDI[9:0]: VCOM to Source interval. Interval time setting from VCOM to source dat.

000 0000 000b ~ 11 1111 1111b: 1 Hsync ~ 1023 Hsync, respectively. (Default: 018h: 25 Hsync)

16-21) R51H (LPD) Low Power Detection

Action	W/R	C/D	D7	D6	D 5	D4	D3	D2	D1	D0
D	W	0	0	1	0	1	0	0	0	1
Detect Low Power	W	1		-	-	-	-	-	-	LPD

This command indicates the input power condition. Host can read this flag to learn the battery condition.

LPD: Internal temperature sensor switch

0: Low power input (VDD<2.2V/2.3V/2.4V/2.5V) 1: Normal status (default)

16-22) R61H (TRES) Resolution Setting

Action	W/R	C/D	D7	D6	D5	D4	D3	D2	D1	D0
Set Display Resolution	W	0	0	1	1	0	0	0	0	1
	W	1	1	1	1	0	1	1	1	1
	W	1	0	0	0	0	0-	0	0	0
	W	1	1	1	1	0	1	1	1	1

16-23) R70H (REV) Revision

Action	W/R	C/D	D7	D6	D5	D4	D3	D2	D1	D 0
	W	0	0	1	1	1	0	0	0	0
Chip Revision	W	1				LUTVE	R0[7:0]			
	W	1				LUTVE	R1[7:0]			

LUTVER0[7:0]: LUT version 0 (Located in internal OTP address: F81h)

LUTVER1[7:0]: LUT version 1 (Located in internal OTP address: F82h)

This command only active when BUSY_N="1".

16-24) R71H (FLG) Get Status

Action	W/R	C/D	D7	D6	D5	D4	D3	D2	D1	D 0
	W	0	0	1	1	1	0	0	0	1
Read Flags	W	1	1	-	I ² C_ER R	I ² C_ BUSY N	data_ flag	PON	POF	BUSY_ N

This command reads the IC status.

I²C_ERR: I²C master error status

I²C_BUSYN: I²C master busy status (low active)

data_flag: Driver has already received all the one frame data

PON: Power ON status

POF: Power OFF status

BUSY_N: Driver busy status (low active)

16-25) R81H (VV) VCOM value

Action	W/R	C/D	D7	D6	D5	D4	D3	D2	D1	D 0	
Automatically measure	R	0	1	0	0	0	0	0	0	1	
Vcom	R	1	1	VV[6:0]							

This command gets the Vcom value.

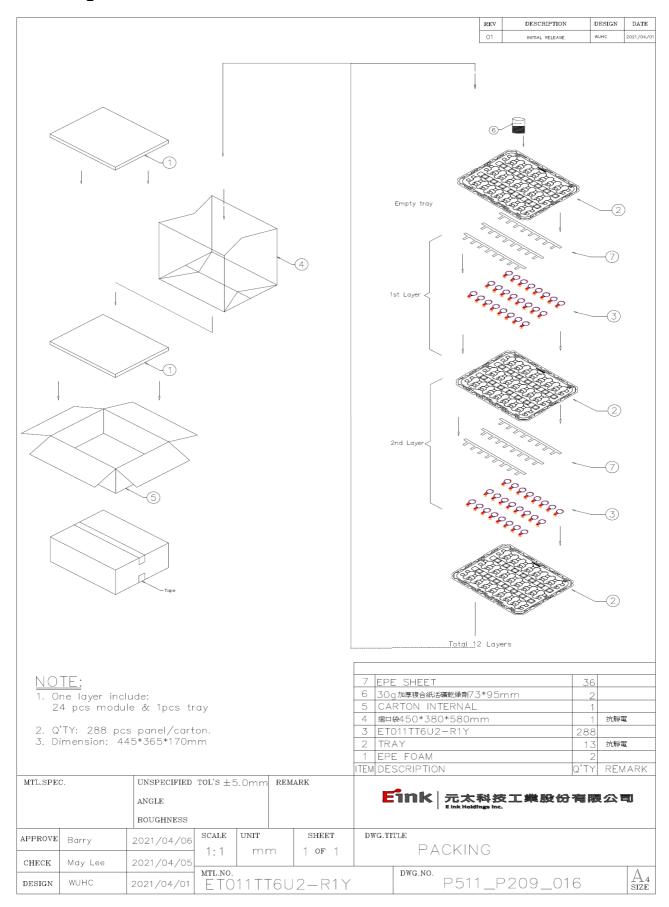
VV[6:0]: Vcom Value

VV[6:0]	VCOM Value						
000 0000ь	-0.1V						
000 0001b	-0.15V						
000 0010b	-0.20V						
000 0011b	-0.25V						
000 0100b	-0.30V						
:	:						
100 1110b	-4.0V						
(others)	-4.0V						

VB3300-AAB(ET011TT6)

16-26) R82H (VDCS) VCM_DC Setting

Action	W/R	C/D	D7	D6	D5	D4	D3	D2	D1	D0
Set VCM_DC	W	0	1	0	0	0	0	0	1	0
	W	1	-	VDCS[60]						


This command sets VCOM_DC value

VDCS[6:0]: Vcom_DC setting

VDCS[6:0]	VCOM_DC value					
000 0000Ь	-0.1V					
000 0001b	-0.15V					
000 0010b	-0.20V					
000 0011b	-0.25V					
000 0100Ь	-0.30V					
;	:					
100 1110b	-4.0V					
(others)	-4.0V					

17. Packing

